- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001100000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bölöni, Ladislau (2)
-
Dutta, Ayan (2)
-
Kreidl, O Patrick (2)
-
Matloob, Samuel (2)
-
Roy, Swapnonel (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract—In many scenarios for informative path planning done by ground robots or drones, certain types of information are significantly more valuable than others. For example, in the precision agriculture context, detecting plant disease outbreaks can prevent costly crop losses. Quite often, there is a limit on the exploration budget, which does not allow for a detailed investigation of every location. In this paper, we propose Learned Adaptive Inspection Paths (LAIP), a methodology to learn policies that handle such scenarios by combining uniform sampling with close inspection of areas where high-value information is likely to be found. LAIP combines Q-learning in an offline reinforcement learning setting, careful engineering of the state representation and reward system, and a training regime inspired by the teacher-student curriculum learning model. We found that a policy learned with LAIP outperforms traditional approaches in low-budget scenarios.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Matloob, Samuel; Dutta, Ayan; Kreidl, O Patrick; Roy, Swapnonel; Bölöni, Ladislau (, IEEE)Free, publicly-accessible full text available December 9, 2025
An official website of the United States government
